Abstract

In recent years, the interest in the research on energy production systems fed by biofuels has increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas (syngas). The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, a numerical analysis of a combustor of a 100-kW micro gas turbine fed by natural gas and biomass-derived synthesis gas is presented. The work has been developed in the framework of a collaboration between the Engineering Department of the University of Ferrara, the Istituto Motori - CNR (Napoli), and Turbec S.p A. of Corporeno di Cento (FE). The main features of the micro gas turbine Turbec T100, located at the Istituto Motori - CNR, are firstly described. A decompression and distribution system allows the feeding of the micro gas turbine with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system has been developed in order to set the operative parameters of the machine. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the micro gas turbine combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e., average outlet temperature and emission levels. A sensitivity analysis on the model capability to simulate different operating conditions is then performed. The combustor model is used to simulate the combustion of a syngas, composed of different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water. The results in terms of flame displacement, temperature and emission distribution and values are analyzed and compared to the natural gas simulations. Finally, some simple modifications to the combustion chamber are proposed and simulated both with natural gas and syngas feeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.