Abstract

Earlier reports had suggested that the large T antigen expressed in simian virus 40 (SV40)-transformed mKS-A cells may be replication defective. Our experiments support these earlier observations showing that the mKS-A T antigen has a reduced DNA-unwinding activity in vitro. To investigate the molecular basis for this defect, we have isolated from an mKS-A genomic library an EMBL-3 bacteriophage clone carrying in its insert a full-length SV40 DNA element that most likely encodes the expressed T-antigen variant. DNA sequencing revealed only one nonconservative amino acid exchange, Asp to Asn at residue 636. Surprisingly, when a plasmid clone carrying the mKS-A T-antigen-coding sequence was transfected into monkey cells, we found that it replicated quite efficiently, probably suggesting that a high nuclear concentration of the variant T-antigen form compensates for the partial biochemical defect. However, a high nuclear concentration of T antigen was also found in mKS-A T-antigen-transformed mouse cells, yet a fusion of these cells to permissive monkey cells failed to induce in situ replication and excision of integrated SV40 DNA. We discuss possible reasons for the different behavior of T antigen in monkey cells and in mouse cells and suggest that one possibility for the replication-negative phenotype in transformed cells may be related to the fact that T antigen forms a tight complex with the cellular p53 protein in mouse cells but not in monkey cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.