Abstract

This paper gives the first systematic perturbation analysis of the audio distortion and mean switching period for a self-oscillating class-D amplifier. Explicit expressions are given for all the principal components of audio distortion, for a general audio input signal; the specific example of a sinusoidal input is also discussed in some detail, yielding an explicit closed-form expression for the total harmonic distortion (THD). A class-D amplifier works by converting a low-frequency audio input signal to a high-frequency train of rectangular pulses, whose widths are slowly modulated according to the audio signal. The audiofrequency components of the pulse-train are designed to agree with those of the audio signal. In many varieties of class-D amplifier, the pulse-train is generated using a carrier wave of fixed frequency, well above the audio range. In other varieties, as here, there is no such fixed-frequency clock, and the local frequency of the pulse-train varies in response to the audio input. Such self-oscillating designs pose a particular challenge for comprehensive mathematical modelling; we show that in order to properly account for the local frequency variations, a warped-time transformation is necessary. The systematic nature of our calculation means it can potentially be applied to a range of other self-oscillating topologies. Our results for a general input allow ready calculation of distortion diagnostics such as the intermodulation distortion (IMD), which prior analyses, based on sinusoidal input, cannot provide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.