Abstract
In this paper, we study a hybridizable discontinuous Galerkin (HDG) method for the Maxwell operator. The only global unknowns are defined on the inter-element boundaries, and the numerical solutions are obtained by using discontinuous polynomial approximations. The error analysis is based on a mixed curl-curl formulation for the Maxwell equations. Theoretical results are obtained under a more general regularity requirement. In particular for the low regularity case, special treatment is applied to approximate data on the boundary. The HDG method is shown to be stable and convergence in an optimal order for both high and low regularity cases. Numerical experiments with both smooth and singular analytical solutions are performed to verify the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.