Abstract

The fluid and particle dynamics of a high-velocity oxygen-fuel (HVOF) torch are analyzed using computational fluid dynamic (CFD) techniques. The thermal spray device analyzed is similar to a Metco Diamond Jet torch with powder injection. The details of the CFD simulation are given in a companion paper. This paper describes the general gas dynamic features of HVOF spraying and then discusses in detail the computational predictions of the present analysis. The gas velocity, temperature, pressure, and Mach number distributions are presented for various locations inside and outside the torch. The two-dimensional numerical simulations show large variations in gas velocity and temperature both inside and outside the torch due to flow features such as mixing layers, shock waves, and expansion waves. Characteristics of the metal spray particle velocity, temperature, trajectory, and phase state (solid or liquid) are also presented and discussed. Particle velocities and temperatures are shown to be lower for this type of torch than previously believed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.