Abstract

This paper presents the analysis of a high-Tc superconducting (HTS) power converting system, as well as its operational characteristics. The converting system can be used to charge and discharge a magnet made of series-connected pancake coils. The HTS converting system consists of two heaters, a primary copper winding, a secondary HTS winding, a series-connected HTS pancake coil, an iron core and a conventional copper load. In the experiments, the charging and discharging periods were 7.5 and 2 s, respectively. A partial region of the superconducting tape in a secondary HTS winding is switched to a normal region by a buried heating coil. To measure the converting-current with respect to the magnet flux changes, a hall sensor was installed at the center of the pancake coil. In this experiment, the charging-current and discharging-energy reached about 51.7 A and 36.8 J, respectively. The experimental results have been compared with theoretical predictions by using the finite difference method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.