Abstract

The equivalent of a blazed diffraction grating can be formed from an array of metamaterial elements arranged so as to produce a linear gradient in the effective refractive index. By spreading the gradient over a multiwavelength distance, and repeating the pattern many times, a gradient index (GRIN) diffraction grating is formed. Using lithographically patterned, metallic metamaterial elements, dozens of distinguishable phase levels can be implemented by slightly modifying the design of each successive metamaterial element. We analyze here a multilayer metamaterial diffraction grating designed for operation at 10.6 μm, exploring the impact of material losses and impedance mismatch on the diffraction efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.