Abstract

In the human glucose-insulin regulatory system, diverse metabolic issues can arise, including diabetes type I and type II, hyperinsulinemia, hypoglycemia, etc. Therefore, the analysis and characterization of such a biological system is a must. It is well known that mathematical models are an excellent option to study and predict natural phenomena to some extent. On the other hand, fractional-order calculus provides a generalization of derivatives and integrals to arbitrary orders giving us a framework to add memory properties and an extra degree of freedom to the mathematical models to approximate real-world phenomena with higher accuracy. In this work, we introduce a fractional-order version of a mathematical model of the glucose-insulin regulatory system. Using the fractional-order Caputo derivative, we can investigate different concentration rates among insulin, glucose, and healthy beta cells. Additionally, the model incorporates two time-lags to represent the elapsed time in insulin secretion in response to blood glucose level and the delay in glucose drop due to increased insulin concentration. Analytical results of the equilibrium points and their corresponding stability are given. Numerical results, including phase portraits and bifurcation diagrams, reveal that the fractional-order increases the chaotic regions, leading to potential metabolic problems. Vice versa, the system seems to work correctly when the behavior evolves to periodic windows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.