Abstract

We consider an n-player symmetric stochastic game with weak interaction between the players. Time is continuous and the horizon and the number of states are finite. We show that the value function of each of the players can be approximated by the solution of a partial differential equation called the master equation. Moreover, we analyze the fluctuations of the empirical measure of the states of the players in the game and show that it is governed by a solution to a stochastic differential equation. Finally, we prove the regularity of the master equation, which is required for the above results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.