Abstract
The finite capacity queues, GI/PH/1/N and PH/G/1/N, in which customers are served in groups of varying sizes were recently introduced and studied in detail by the author. In this paper we consider a finite capacity queue in which arrivals are governed by a particular Markov renewal process, called a Markovian arrival process (MAP). With general service times and with the same type of service rule, we study this finite capacity queueing model in detail by obtaining explicit expressions for (a) the steady-state queue length densities at arrivals, at departures and at arbitrary time points, (b) the probability distributions of the busy period and the idle period of the server and (c) the Laplace-Stieltjes transform of the stationary waiting time distribution of an admitted customer at points of arrivals. Efficient algorithmic procedures for computing the steady-state queue length densities and other system performance measures when services are of phase type are discussed. An illustrative numerical example is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.