Abstract

The axis of the East Pacific Rise is defined by a topographic block about 15 km wide and 300 to 350 m high which is flanked by abyssal hills 100 to 200 m high and 3 to 5 km wide. These hills often are tilted such that their steep slopes face the axis. An empirical model explaining these features combines axial extrusion to form the central block and rotational faulting to lower the shoulders of the axial block to the regional depth and tilt them outward.The axial block is offset about 10 km left-laterally at 10.0°S and a similar amount right-laterally at 11.5°S. Offsets (or lack of offsets) of young magnetic anomalies indicate that these axial displacements occurred between 1.7 and 0.9 m.y. ago and 0.7 m.y. ago and the present in the north and south. respectively. These small axial offsets are interpreted to be the result of either brief episodes of asymmetric see-floor spreading or discrete jumps in the site of spreading activity. Both axial shifts were to the west; a unidirectional sequence of such shifts occurring at the above rate of one per million years would be difficult to differentiate from true regional asymmetric spreading and might explain that phenomenon on other medium-to fast-spreading rises.Reconnaissance data from the east flank of the East Pacific Rise indicate that spreading activity began on that part of the rise between the 9°S and 13.5°S fracture zones approximately 8.2 m.y. ago when the site of crustal accretion jumped westward from the now dormant Galapagos Rise. Slope change in crust approximately 2 and 6 m.y. old imply faster spreading rates between about 6 and 2 m.y. ago than either before or after that time. Identification and correlation of anomaly 3′ allows an estimate of about 90 mm/y for this higher east flank spreading rate. Since 1.7 m.y. ago spreading rates have averaged about 80 mm/y to the west and 77 mm/y to the east.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.