Abstract

We propose and analyze a fast method for computing the solution of the high frequency Helmholtz equation in a bounded one-dimensional domain with a variable wave speed function. The method is based on wave splitting. The Helmholtz equation is split into one-way wave equations with source functions which are solved iteratively for a given tolerance. The source functions depend on the wave speed function and on the solutions of the one-way wave equations from the previous iteration. The solution of the Helmholtz equation is then approximated by the sum of the one-way solutions at every iteration. To improve the computational cost, the source functions are thresholded and in the domain where they are equal to zero, the one-way wave equations are solved with geometrical optics with a computational cost independent of the frequency. Elsewhere, the equations are fully resolved with a Runge–Kutta method. We have been able to show rigorously in one dimension that the algorithm is convergent and that for fixed accuracy, the computational cost is asymptotically just $\mathcal {O}(\omega^{1/ p})$ for a pth order Runge–Kutta method, where ω is the frequency. Numerical experiments indicate that the growth rate of the computational cost is much slower than a direct method and can be close to the asymptotic rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call