Abstract

Abstract A detailed analysis of a dryline that formed on 22 May 2002 during the International H2O Project (IHOP) is presented. The dryline was classified as a null case since air parcels lifted over the convergence boundary were unable to reach the level of free convection preventing thunderstorms from forming. A secondary dryline associated with a distinct moisture discontinuity developed to the west of the primary dryline. The primary dryline exhibited substantial along-frontal variability owing to the presence of misocyclones. This nonlinear pattern resembled the precipitation core/gap structure associated with cold fronts during one of the analysis times although the misocyclones were positioned within the gap regions. Radar refractivity has been recently shown to accurately retrieve the low-level moisture fields within the convective boundary layer; however, its use in forecasting the initiation of convection has been restricted to qualitative interpretations. This study introduces the total derivative of radar refractivity as a quantitative parameter that may improve nowcasts of convection. Although no storms developed on this day, there was a tendency for maxima of the total derivative to be near regions where cumulus clouds were developing near a convergence boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call