Abstract

Impedance and admittance matrices of a piezoelectric annular actuator with segmented electrodes are presented for the analysis of the disk-type piezoelectric ultrasonic motors (USM). Equations of motion and the conjugate parameters for the impedance and admittance matrices are derived using the variational principle. In the derivation, the electric field in the piezoelectric layer is assumed to be constant over the area covered by a particular electrode, and the effects of both shear deformation and rotary inertia are taken into account. The resonance and antiresonance frequencies and the vibrating modes are calculated for the various resonance modes and boundary conditions, and the results are compared with those by the three-dimensional finite element methods. They are in excellent agreement with each other. It is expected that the derived impedance matrix can be effectively applied to the analysis and the design of the USM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call