Abstract

A discrete-time Markov process with a bounded continuous state space is considered. We show that the equilibrium equations on steady-state probability and densities form Fredholm integral equations of the second kind. Then, under a sufficient condition that the transition densities from one state to another state inside the boundaries of the state space can be expressed in the same separate forms, the steady-state probability and density functions can be obtained explicitly. We use it to demonstrate an economic production quantity model with stochastic production time, derive the expressions of the steady-state probabilities and densities, and find the optimal maximum stock level. A sensitivity analysis of the optimal stock level is performed using production time and cost parameters. The optimal stock level decreases with respect to the holding cost and the production cost, whereas it increases with respect to the lost sale cost and the arrival rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.