Abstract
Vallis system is a model describing nonlinear interactions of the atmosphere and temperature fluctuations with a strong influence in the equatorial part of the Pacific Ocean. As the model approaches the fractional order from the integer order, numerical simulations for different situations arise. To see the behavior of the simulations, several cases involving integer analysis with different non-integer values of the Vallis systems were applied. In this work, a fractional mathematical model is constructed using the Caputo derivative. The local asymptotic stability of the equilibrium points of the fractional-order model is obtained from the fundamental production number. The chaotic behavior of this system is studied using the Caputo derivative and Lyapunov stability theory. Hopf bifurcation is used to vary the oscillation of the system in steady and unsteady states. In order to perform these numerical simulations, we apply Grünwald–Letnikov tactics with Binomial coefficients to obtain the effects on the non-integer fractional degree and discrete time vallis system and plot the phase diagrams and phase portraits with the help of MATLAB and MAPLE packages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.