Abstract

We present the theoretical analysis and performance results of a direct microcontroller unit (MCU) interface circuit for capacitive sensors based on the charge-transfer method, when stray capacitances are considered. The interface circuit can implement two alternative two-point calibration techniques that reduce the effects of stray capacitance, temperature, and MCU parameters that depend on the power supply voltage. The best measurement deviation achieved from 0degC to 50degC and for power supply voltage from 4.0 to 5 V is below 0.01 full-scale range (FSR) for the two subranges from 10 to 100 pF and from 100 pF to 1 nF and 0.08 FSR for the subrange from 2 to 10 pF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.