Abstract

Recently, through-wall circumferential cracks in several control rod drive mechanism (CRDM) nozzle penetrations were detected at the Oconee-3 nuclear power plant. The presence of these cracks was seen as a potential precursor to a small break loss of coolant accident. In order to assess the impact of a postulated failure of a CRDM housing, analyses were performed using the U.S. NRC coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. Although deemed highly unlikely, it was assumed that no control rods inserted in order to bound any possible reactivity transient associated with the break. The thermal-hydraulic model used to perform the study is based on an existing model of Oconee, built for PTS analysis, which models the whole plant and some of its control systems. A refined vessel model based on a TMI model was used to increase the resolution of the results and facilitate coupling to PARCS. All relevant ECCS systems were modeled and the control system allowed for, in addition to automatic actions, some assumed operator intervention. In particular, HPI throttling was modeled to maintain the hot leg subcooled at 42 +/- 7 K, and prevent an excessive amount of cold water from being injected into the system. A spatial kinetics analysis of this event was necessary because of the wide range of core conditions which occurred during the transient, from hot full power operation conditions to the cold zero power shutdown state. Analysis of the event with point kinetics and “best estimate” reactivity coefficients resulted in significant miss-prediction of the core power response. Conversely, the three-dimensional kinetics solution with cross section data generated over the entire range of the event led to a more accurate calculation of the power response and the overall analysis of the system transient response. This paper will describe the analysis of the control rod drive nozzle break event without scram using TRAC-M/PARCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.