Abstract

The problem of a crack approaching a circular hole in cross-ply laminates under uniaxial and biaxial loading is investigated in this paper. The effects of material orthotropy, geometry [R/d and a/d], and loading conditions on crack tip singularity are investigated. The stress intensity factors are obtained by the modified mapping collocation method. The present results for an isotropic infinite plate show good agreement with existing solutions. The results for cross-ply laminates show that the stress intensity factors strongly depend on material orthotropy, geometry, and loading condition. The stress intensity factors for cross-ply laminates exist between those for θ=0° and those for θ=90° in the whole range of crack length and decrease as the percentage of 0° plies increases. In the range of small crack length the stress intensity factors for biaxial tension are higher than those for uniaxial tension. In the range of large crack length the stress intensity factors for uniaxial tension are higher than those for biaxial tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call