Abstract

The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.

Highlights

  • Conditional induction of loss-of-function mutations using the Cre-lox system has enabled thorough mechanistic studies of all biological processes, from development to organ homeostasis and behavior, in the mouse model system [1,2,3,4]

  • Using tbx5atpl58 as the model gene trap locus, we demonstrate that these +10/-10 loxP and FRT sites can be readily used to stably invert the gene trap cassette in larval and adult zebrafish, and observe that tbx5a is required for cardiac regeneration

  • To facilitate genetic analysis of pleiotropic genes and biological processes which occur late in ontogenesis, we have developed a highly mutagenic and fully conditional 5’ gene trap with Gal4-VP16 as the primary gene trap reporter

Read more

Summary

Introduction

Conditional induction of loss-of-function mutations using the Cre-lox system has enabled thorough mechanistic studies of all biological processes, from development to organ homeostasis and behavior, in the mouse model system [1,2,3,4]. We decided to use our gene trap mutant to test if tbx5a may be required for cardiac regeneration in adult zebrafish. We first tested if fish heterozygous for the tbx5atpl58 gene trap are able to regenerate their hearts after ventricular resection.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.