Abstract

This paper proposes and studies the performance of a preconditioner suitable for solving a class of symmetric positive definite systems, Apx=b, which we call lower rank extracted systems (LRES), by the preconditioned conjugate gradient method. These systems correspond to integral equations with convolution kernels defined on a union of many line segments in contrast to only one line segment in the case of Toeplitz systems. The p × p matrix, Ap, is shown to be a principal submatrix of a larger N × N Toeplitz matrix, AN. The preconditioner is provided in terms of the inverse of a 2N × 2N circulant matrix constructed from the elements of AN. The preconditioner is shown to yield clustering in the spectrum of the preconditioned matrix similar to the clustering results for iterative algorithms used to solve Toeplitz systems. The analysis also demonstrates that the computational expense to solve LRE systems is reduced to O(N log N). Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.