Abstract

The release of the cardiac troponin T (cTnT) in patients with acute myocardial infarction (AMI) has been analyzed through a methodology based on nonlinear mixed-effects (NME) models. The aim of this work concerns the investigation of any possible relationship between clinical covariates and the dynamics of the release of cTnT to derive more detailed and useful clinical information for the correct treatment of these patients. An ad-hoc mechanistic model describing the biomarker release process after AMI has been devised, assessed, and exploited to evaluate the impact of the available clinical covariates on the cTnT release dynamic. The following approach was tested on a preliminary dataset composed of a small number of potential clinical covariates: employing an unsupervised approach, and despite the limited sample size, dyslipidemia, a known risk factor for cardiovascular disease, was found to be a statistically significant covariate. By increasing the number of covariates considered in the model, and patient cohort, we envisage that this approach may provide an effective means to automatically classify AMI patients and to investigate the role of interactions between clinical covariates and cTnT release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.