Abstract

AbstractBoundary layer flow phenomenons on a stretching sheet find numerous applications in industrial processes such as manufacture and extraction of rubber and polymer sheets. The current study focuses on two‐dimensional water boundary layer flow on exponential stretching surface with a vertical plate for variable physical properties of fluid such as viscosity and Prandtl number. The Quasilinearization technique has been used on governing equations to transform nonlinear to linear equations and these equations are discretized by finite difference techniques to get numerical solutions. The effect of buoyancy parameters (λ), velocity ratio parameter () and streamwise coordinator (ξ) on velocity profiles (F), temperature profiles (θ), local skin‐friction coefficient (Cfx(ReLξexp(ξ))1/2) and the local Nusselt number (Nux(ReLξexp(ξ))−1/2) has been analyzed graphically based on numerical outcome. The magnitude of velocity profiles increases and temperature profile decreases approximately by 4% and 16% with increases the buoyancy parameter from λ = 1 to λ = 3 at = 0.5 and ξ = 1.0. The skinfriction and heat transfer coefficient increases approximately by 22% and 27% with an increase in ξ from 0.5 to 1.0 at fixed = 0.5 and λ = 1.0. The variations of velocity profiles and temperature profiles have more impact with as compared to ξ and λ. The benchmark studies were carried out to validate the current results with previously published work and found to be in excellent agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.