Abstract
AbstractDepartments of transportation are increasingly embracing pipe ramming for culvert installation under roadways due to its cost effectiveness and ability to mitigate problems associated with open-cut trenching. Despite the increase in use, little technical guidance is available for the engineering of pipe-ramming installations. This study presents the analysis of the performance of an instrumented 610-mm-diameter steel pipe installed using pipe ramming. Measurements include ground surface movement and dynamic force and velocity waveforms to obtain driving stresses, hammer-pipe energy transfer, and static and dynamic soil resistance during the installation. Ground movements are compared to existing settlement prediction models. Inverted normal probability distribution models commonly used in tunnel engineering were evaluated and were observed to capture the observed settlement close to the center of the pipe but did not accurately predict the observed transverse settlement profiles. The transfer of e...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.