Abstract

This paper reports experimental results on single quantum-well separate confinement heterostructures (SQW SCH) with low-confinement factor, designed for very high-power operation. The maximum power output for AR/HR coated 3-mm-long devices, measured in very short pulsed conditions (100 ns/1 kHz), from 10-/spl mu/m-wide stripes was as high as 6.4 W before catastrophic optical degradation. If scaled to continuous-wave (CW) conditions, this value would be 800-1100 MW, which would mean a factor of 22.7 times more than reported for the best devices with normal design for threshold minimization. The absorption coefficient for the symmetrical structure is as low as 1.1 cm/sup -1/, in spite of the low trapping efficiency of carriers in the quantum well (QW). The maximum differential efficiency is 40% (both faces, uncoated devices) for symmetrical structure and 33% for the asymmetrical one (all measurements in pulsed conditions). Threshold current densities were 800 A/cm/sup 2/ for 5-mm-long devices in the symmetrical case and 2200 A/cm/sup 2/ in the asymmetrical one. The effects of inefficient carrier trapping in the QW on the threshold current densities and differential efficiency are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.