Abstract

Considering the fact that the GaAs has the characteristics of thermal decomposition, the thermal decomposition damage to GaAs surface, induced by a 532 nm wavelength long pulse laser with a millisecond pulse width is studied by the heat conduction theoretical and semi-analytical method. First, the calculation models of two-dimensional axisymmetric transient temperature field and the surface thermal decomposition damage threshold for long pulse laser irradiation of GaAs are established, and the transient temperature fields and the thermal decomposition damage thresholds in GaAs with different absorption rates are simulated. The results show that the higher absorption rate causes the higher temperature rise on the surface of material, but the required decomposition damage energy density is lower. With the increase of laser energy density, the decomposition damage occurs more early. This paper has guiding significance and practical value for investigating the interaction between long pulse laser and GaAs and its damage mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.