Abstract

Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.