Abstract
An analytical approach to solve plane static non-axisymmetric elasticity and thermoelasticity problems for radially inhomogeneous hollow cylinders is presented. This approach is based upon the direct integration method proposed by Vihak (Vigak). The essence of the method mentioned is in the integration of the original differential equilibrium equations, which are independent of the stress–strain relations. This gives the opportunity to deduce the relations, which are invariant with respect to various properties of the material, for the stress-tensor components. From these relations each of the stress-tensor components have been expressed in terms of the governing one. A solution of the equation for the governing stress in the form of Fourier series is presented. To determine the Fourier coefficients, an integral Volterra-type equation is derived and solved by a simple iteration method with rapid convergence. Other stress-tensor components are expressed through the obtained governing stress in the form of an explicit functional dependence on force and thermal loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.