Abstract

We consider the stochastic model of concentrated Liquid Crystal Polymers(LCPs) in the plane Couette flow. The dynamic equation for the liquid crystal polymers is described by a nonlinear stochastic differential equation with Maier-Saupe interaction potential. The stress tensor is obtained from an ensemble average of microscopic polymer configurations. We present the local existence and uniqueness theorem for the solution of the coupled fluid-polymer system. We also analyze the error of a fully finite difference-Monte Carlo hybrid numerical scheme by investigating the asymptotic behavior of weakly interacting processes. It is proved that the rate of convergence of the full discretized scheme is O(h 2 + δt + 1 √ M ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.