Abstract
The primary mirror component is an important part of the Cassegrain system. As the first-stage imaging component, the RMS surface error directly affects the image quality of the whole optical system. In this article, taking the primary mirror component of a certain type of Cassegrain aerial camera as the research object, the factors affecting the RMS precision of the primary mirror surface are analyzed in detail from aspects of back supporting structure design, platen elastic crimping design, simulation analysis, test verification and so on. Using the finite element method to simulate the primary mirror supporting structure, analyzes the influence on the primary surface error by the three-point supporting structure in different positions. Furthermore, analyzes the variations of the primary mirror surface error under the influence of three-point supporting structure and pressure plate. The last but not the least, analyzes the primary mirror surface error under the different pressure conditions, concludes the optimal supporting point position and the excellent elastic compression. After the primary mirror assembling, through test verification, the RMS is 0.0270λ, which is better than the original design requirement of λ/35(0.0286λ). And the RMS variation between before and after assembling is less than 0.005λ. Performing the high and low temperature test on the primary component, after test, the RMS values is 0.0269λ, it proves that the primary frame structure and its axial supporting structure have little effects on the RMS precision of the primary mirror. It can also meet the requirement of the large-aperture primary mirror surface in the co-optical system under complex conditions. The feasibility of the structure design has been verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.