Abstract
A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill’s ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Frontiers of Earth Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.