Abstract
This paper presents an in-depth analysis, performance evaluation and comparative study of two 5-kW, 8-pole, 750-rpm laboratory prototypes of a permanent magnet synchronous motor (PMSM) of identical nominal ratings with surface and interior permanent magnet (PM) rotor structures having same stator and armature winding (fractional slot distributed winding). The key electrical (such as rated voltage, current, power, speed, number of poles, etc.) and mechanical variables (such as overall volume, air-gap length, rotor diameter, shaft dimensions and magnetic material) of the fabricated prototypes have also been kept same to pin-point the direct influence of the two different rotor configurations (surface and interior PMSM) on the parameters, performance and operation of these PMSMs. For the two machines, a detailed comparison of air-gap flux density distribution, THD in induced voltage, torque ripple, losses, efficiency, torque–speed characteristics, field weakening capability, steady-state parameters at different operating conditions, etc. has been conducted. The salient observations from this comparative study have been duly highlighted. This paper also includes an in-depth comparison of volume and cost of PM used in the two types of PMSMs. The short-time performance figures of the said motors have also been presented. The possibility of demagnetisation of PMs, during a sudden fault, has also been investigated for both PMSMs. Challenges of making of both rotors have been discussed. The theoretically determined parameters and analytically evaluated performance figures have been verified through standard FEM packages and then validated experimentally on the prototypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.