Abstract

This paper proposes a new type dc/ac inverter named: hybrid-coupling grid-connected inverter (HGCI) for photovoltaic active power generation with power quality conditioning, which consists of a full-bridge three-phase dc/ac inverter coupling to the power grid in series with a thyristor-controlled LC filter. Compared with the conventional inductive-coupling grid-connected inverter (IGCI) and capacitive-coupling grid-connected inverter (CGCI), the proposed HGCI has distinct characteristics of wide operational range and low dc-link operating voltage. Based on these prominent characteristics, the system cost and operational cost can be reduced. Moreover, it can transfer the active power and compensate reactive power, unbalanced power, and harmonic power simultaneously. In this paper, the analysis of the structure, parameter design, and control method of the HGCI is proposed and presented. Finally, simulation and experimental results are provided to verify the effectiveness and performance of the proposed HGCI in comparison with the IGCI and CGCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.