Abstract

Based on the polarization property of fluorescent dipoles, fluorescence super-resolution microscopy recently has been proposed by modulating the polarization of the excitation light. In this technique, the super-resolution image is reconstructed by processing the polarization-modulated fluorescence image stack with an iteration algorithm. However, the mechanism of resolution improvement by polarization modulation has been questioned. In this paper, the mechanism of resolution enhancement by polarization modulation is analyzed in reciprocal space. The mathematical model and the reconstruction algorithm of fluorescence super-resolution microscopy via polarization modulation are proposed in reciprocal space. The corresponding simulation results and analysis show that polarization modulation can enlarge the highest detected spatial frequency of fluorescence microscopy to achieve super resolution, which verifies the role of polarization modulation in resolution improvement and provides a useful reference to study fluorescence super-resolution microscopy via polarization modulation in reciprocal space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call