Abstract

Many biological architectures are Bouligand structures, which comprise uniaxial fiber layers stacked in a periodic helical arrangement and are characterized by high damage resistance. As an effective flexible protective structure, fish skin is a Bouligand structure that protects the body while ensure flexibility during swimming and predation. In this paper, an analytical model inspired by fish skin is established based on previous studies, and the parameters for describing crack growth are determined. Then, mathematical expressions for the local stress intensity factors and plastic zone are used to predict how the helical stacking angle α influences the crack propagation. The results show that crack deflection and twisting improve the fracture toughness of the composite structure greatly, with the optimal fracture toughness being that for α = 60° – 70°. Moreover, biomimetic flexible composite structures inspired by fish skin are produced using silicone and Kevlar fibers. Scanning electron microscopy is used to observe the cross-sectional morphology of the composite structures, showing that the interfaces between the silicone and Kevlar fibers are highly compact. Results from experimental impact tests agree well with the predicted results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.