Abstract

The solute-carrier gene (SLC) superfamily encodes membrane-bound transporters. The SLC superfamily comprises 55 gene families having at least 362 putatively functional protein-coding genes. The gene products include passive transporters, symporters and antiporters, located in all cellular and organelle membranes, except, perhaps, the nuclear membrane. Transport substrates include amino acids and oligopeptides, glucose and other sugars, inorganic cations and anions (H+, HCO3-, Cl-, Na+, K+, Ca2+, Mg2+, PO43-, HPO42-, H2PO4-, SO42-, C2O42-, OH-,CO32-), bile salts, carboxylate and other organic anions, acetyl coenzyme A, essential metals, biogenic amines, neurotransmitters, vitamins, fatty acids and lipids, nucleosides, ammonium, choline, thyroid hormone and urea. Contrary to gene nomenclature commonly assigned on the basis of evolutionary divergence http://www.genenames.org/, the SLC gene superfamily has been named based largely on transporter function by proteins having multiple transmembrane domains. Whereas all the transporters exist for endogenous substrates, it is likely that drugs, non-essential metals and many other environmental toxicants are able to 'hitch-hike' on one or another of these transporters, thereby enabling these moieties to enter (or leave) the cell. Understanding and characterising the functions of these transporters is relevant to medicine, genetics, developmental biology, pharmacology and cancer chemotherapy.

Highlights

  • The period between the 1980s and the early 1990s might be considered the era of ‘the cloning of genes encoding enzymes and transcription factors’, whereas that between the early 1990s and the present day could be regarded as focusing on ‘the cloning of genes coding for transporters’

  • Another reason might be that the mRNA transcripts for enzymes are usually shorter than those for transporters, and early reverse transcription activities starting at the 30 end were tedious and less efficient, meaning that longer mRNA transcripts were often unsuccessful

  • SLC15, with four members, represents a family of proton-oligopeptide symporters;[19,20] SLC17, with eight members, is involved in diverse processes ranging from the vesicular storage of the neurotransmitter glutamate to the degradation and metabolism of glycoproteins;[21] SLC32, with one member only, transports amino acids across vesicle

Read more

Summary

Introduction

The period between the 1980s and the early 1990s might be considered the era of ‘the cloning of genes encoding enzymes and transcription factors’, whereas that between the early 1990s and the present day could be regarded as focusing on ‘the cloning of genes coding for transporters’. Eight families comprise the group that transports exclusively inorganic cations and anions across membranes (Table 1): SLC4, with ten members, plays a pivotal role in mediating Naþ- and/or Cl2-dependent transport of basic anions

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.