Abstract

Accounting for transmission losses properly is critical in hydrologic analyses in arid and semiarid climates. The objective of this research was to develop a model that could account for the spatial and temporal variations of transmission losses while routing the flow hydrograph through the channel reach. This model was based on Hortonian infiltration methods and hydrologic channel routing. While most transmission loss models predict flow volumes, the model developed herein uses hydrographs of individual storm events. A numerical optimization procedure was used to identify optimum parameter values for each of Horton’s parameters and the routing coefficient, which were then used in modeling transmission losses. Flow gauge data were obtained from the Walnut Gulch Experimental Watershed, which is located near Tucson, Ariz. Testing of this model indicates that it is able to account for transmission losses and predict downstreamflow with reasonable accuracy. To provide a measure of verification, the model was compared to predictions from Lane’s model, which is a commonly used method of accounting for transmission losses based on upstreamflow and downstreamflow volumes. Overall the two methods were found to agree fairly well though differing assumptions in the methods influence the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.