Abstract
Spin-exchange relaxation-free (SERF) atomic magnetometers operated under a near-zero magnetic field are used for vector magnetic field measurements with high sensitivity. Previously, the cross-axis coupling error evoked by a nonzero background magnetic field has been verified to be adverse in modulated single-beam magnetometers. Here, in a dual-beam unmodulated SERF magnetometer, we propose a somewhat different solution model for the cross-axis coupling effect where the field of interest couples with the interference field. Considering two cases where the transverse or longitudinal background field exists, the cross-axis coupling effect dependence on multiple factors is investigated here based on the dynamic response under a background magnetic field within ±5 nT. The theoretical and experimental investigation suggests that it has an adverse impact on the output response amplitude and phase and tilts the sensitive axis by several degrees, causing a measurement error on the dual-beam magnetometer. To suppress this effect, the background magnetic field is compensated through the PI closed-loop control. The coupling effect is effectively suppressed by 1.5 times at the 10–40 Hz low-frequency band and the sensitivity reaches 2.4 fT/Hz1/2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.