Abstract

Levitated micro-resonators in vacuums have attracted widespread attention due to their application potential in precision force sensing, acceleration sensing, mass measurement and gravitational wave sensing. The optically levitated microsphere in a counter-propagating dual-beam optical trap has been of particular interest because of its large measurement range and flexible manipulation. In this system, laser intensity fluctuation directly influences the trap stability and measurement sensitivity, which makes it a crucial factor in improving trapping performance. In this paper, a time-varying optical force (TVOF) model is established to characterize the influence of laser intensity fluctuation in a dual-beam optical trap. The model describes the relationship between the laser intensity fluctuation, optical force and the dynamic motion of the micro-sized sphere. In addition, an external laser intensity control method is proposed, which achieved a 16.9 dB laser power stability control at the relaxation oscillation frequency. The long-term laser intensity fluctuation was suppressed from 3% to 0.4% in a one-hour period. Experiments showed that the particle’s position detection sensitivity and the stability of the relaxation oscillation could be improved by laser intensity fluctuation suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.