Abstract
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface imaging width of more than 2300 km, which can complete two coverage observations of global targets per day with high detection efficiency. According to the characteristics of the operating orbit and large-angle scanning imaging of MERSI, a stray light radiation model of the polar-orbiting spectrometer is constructed, and the design requirements of stray light suppression are proposed. Using the point source transmittance (PST) as the merit function of the stray light analysis method, the instrument was simulated with all stray light suppression optical paths, and the effectiveness of stray light elimination measures was verified using the stray light test. In this paper, the full-link method of "orbital stray light radiation model-system, internal and external simulation design-system analysis and actual test comparison verification" is proposed, and there is a maximum decrease in the system's PST by about 10 times after applying the stray light suppression's optimization design, which can provide a general method for stray light suppression designs for polar-orbit spectral imagers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.