Abstract

Raw petroleum and natural gas often contain high concentrations of mercury, which can be damaging to the metal components of production facilities, as well as to the environment. Various Hg species have different properties in terms of mobility, reactivity and bioavailability. Thus, for cost-effective decisions regarding plant design, Hg extraction, and pollution control, speciation information must be available at the production facility. In this paper, a simple, wet chemical speciation method, which provides data on Hg(o), dissolved and particulate total Hg, Hg(II), and methyl Hg is presented. The method incorporates species-specific extraction and separation procedures, followed by cold vapor atomic fluorescence spectrometry (CVAFS). For each species, detection limits of approximately 0.1 ng/g were obtained. Storage experiments in various containers showed that organo-mercury species were stable for at least 30 days in all containers except those made of polyethylene; and Hg(o) was stable in all containers except those made of stainless steel or polyethylene. Hg(II) was rapidly lost from all containers except those made of aluminum, which rapidly converted it to Hg(o), which was stable. In general, most of the total Hg in petroleum products was particulate Hg, followed by dissolved Hg(II) and Hg(o). Sub-ng/g concentrations of methyl-Hg were observed in most samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.