Abstract

Abstract. Mathematical modeling of biological systems is crucial to effectively and efficiently developing treatments for medical conditions that plague humanity. Often, systems of ordinary differential equations are a traditional tool used to describe the spread of disease within the body. We consider the dynamics of the Human Immunodeficiency Virus (HIV) in vivo during the initial stages of infection. In particular, we examine the well-known three-component model and prove the existence, uniqueness, and boundedness of solutions. Furthermore, we prove that solutions remain biologically meaningful, i.e., are positivity preserving, and perform a thorough, local stability analysis for the equilibrium states of the system. Finally, we incorporate random coefficients into the model, selected from uniform, triangular, and truncated normal probability distributions, and obtain numerical results to predict the probability of infection given the transmission of the virus to a new individual.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call