Abstract

Differences in the motion of different parts of a target cause the echo signal to contain specific Doppler modulation information, i.e., the micro-Doppler (m-D) effect. This phenomenon provides an effective way to detect targets in marine environments. In this study, based on the establishment of the micromotion model of a rotating surveillance radar and analysis of the m-D frequency, the geometrical optics and physical optics (GO-PO) method and the time-frequency analysis technique are used to obtain the radar cross section (RCS) and m-D signature of a ship with a shipborne radar at different observation angles. The ship, as the main component of the echo, is associated with the main energy. Finding the optimum angle to observe the shipborne radar is of great importance. The results show that the m-D signatures of the shipborne radar are not clear when the elevation angle is greater than 60° but are clear when the elevation angle is less than 55°. Moreover, some motion parameters can be extracted from the m-D signature, such as the period of the ship micromotion. The rotation speed of the shipborne radar can be obtained and is consistent with the set speed. This can help identify and track the key parts of a ship with local motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.