Abstract

Scoliosis is thought to progress during growth because spinal deformity produces asymmetrical spinal loading, generating asymmetrical growth, etc. in a ‘vicious cycle.’ The aim of this study was to test quantitatively whether calculated loading asymmetry of a spine with scoliosis, together with measured bone growth sensitivity to altered compression, can explain the observed rate of scoliosis progression in the coronal plane during adolescent growth. The simulated spinal geometry represented a lumbar scoliosis of different initial magnitudes, averaged and scaled from measurements of 15 patients’ radiographs. Level-specific stresses acting on the vertebrae were estimated for each of 11 external loading directions (‘efforts’) from published values of spinal loading asymmetry. These calculations assumed a physiologically plausible muscle activation strategy. The rate of vertebral growth was obtained from published reports of growth of the spine. The distribution of growth across vertebrae was modulated according to published values of growth sensitivity to stress. Mechanically modulated growth of a spine having an initial 13° Cobb scoliosis at age 11 with the spine subjected to an unweighted combination of eleven loading conditions (different effort direction and magnitude) was predicted to progress during growth. The overall shape of the curve was retained. The averaged final lumbar spinal curve magnitude was 32° Cobb at age 16 years for the lower magnitude of effort (that produced compressive stress averaging 0.48 MPa at the curve apex) and it was 38° Cobb when the higher magnitudes of efforts (that produced compressive stress averaging 0.81 MPa at the apex). An initial curve of 26° progressed to 46° and 56°, respectively. The calculated stresses on growth plates were within the range of those measured by intradiscal pressures in typical daily activities. These analyses predicted that a substantial component of scoliosis progression during growth is biomechanically mediated. The rationale for conservative management of scoliosis during skeletal growth assumes a biomechanical mode of deformity progression (Hueter-Volkmann principle). The present study provides a quantitative basis for this previously qualitative hypothesis. The findings suggest that an important difference between progressive and non-progressive scoliosis might lie in the differing muscle activation strategies adopted by individuals, leading to the possibility of improved prognosis and conservative or less invasive interventions.

Highlights

  • ObjectiveScoliosis is thought to progress during growth because angular deformity produces asymmetrical spinal loading, generating asymmetrical growth, etc. in a 'vicious cycle' [1]

  • cecoc4otnhteInte/prndaf/t1io7n4a8l-7C1o6n1f-e2r-eSn1c-einofon.pCdofvaent of Spinal Deformities Publication of these abstracts has been funded by the National Scoliosis Foundation (http://www.scoliosis.org) and the Asklepios Katharina Schroth, Spinal Deformities Rehabilitation Centre (http://www.skoliose.com) Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://

  • Estimated level-specific spinal loading asymmetry, together with the relationship expressing growth sensitivity to load were included in an analysis that was used to estimate the resulting asymmetrical vertebral growth, and its contribution to the progression of a scoliosis curvature

Read more

Summary

Objective

Scoliosis is thought to progress during growth because angular deformity produces asymmetrical spinal loading, generating asymmetrical growth, etc. in a 'vicious cycle' [1]. The aim of this study was to test quantitatively whether calculated loading asymmetry of a spine with scoliosis, together with measured bone growth sensitivity to altered compression can explain the observed rate of progression during adolescent growth

Study design
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.