Abstract
This study of linear enamel hypoplasia (LEH) in Plio-Pleistocene hominins builds on a previous study (Guatelli-Steinberg [2003] Am. J. Phys. Anthropol. 120:309-322) that focused on LEH in early South African hominins. The present study is more comprehensive, encompassing dental specimens of hominins from East Africa as well, including early Homo. As a developmental defect of enamel, LEH is used in anthropological contexts to reveal information about physiological stress. However, intrinsic aspects of enamel development and morphology can affect the expression of LEH, complicating efforts to understand the significance of these defects. In this study, the analysis of LEH is conducted with respect to enamel development and morphology. It is predicted that Paranthropus should have fewer defects on its canine teeth than Australopithecus and Homo, owing to its abbreviated period of enamel formation. This prediction is supported: Paranthropus has statistically significantly fewer defects per canine than Australopithecus and Homo. The previous study demonstrated that despite the wider spacing of perikymata on the teeth of South African Paranthropus, defects on the canine teeth of this genus were not wider than those of Australopithecus. A multiple linear regression analysis in that study, as well as a separate analysis in the present study, indicate that the number of perikymata within defects is a better predictor of defect width than perikymata spacing. In this study, it was additionally found that the average number of perikymata within Australopithecus defects is statistically significantly greater than it is in Paranthropus, thus explaining why Paranthropus defects are not wider than those of Australopithecus. The biological significance of this difference in the number of perikymata within the defects of Australopithecus and Paranthropus is considered in light of several factors, including: 1) the possibility that other intrinsic attributes of enamel morphology may be involved (specifically the faster extension rates of Paranthropus that result in shallower defects), 2) generic differences in the canalization of enamel development, and 3) generic differences in the duration of disruptions to enamel growth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.