Abstract
Atmospheric ducts are horizontal layers that occur under certain weather conditions in the lower atmosphere. Radio signals guided in atmospheric ducts tend to experience less attenuation and spread much farther, i.e, hundreds of kilometers. In a large-scale deployed TD-LTE (Time Division Long Term Evolution) network, atmospheric ducts cause faraway downlink wireless signals to propagate beyond the designed protection distance and interfere with local uplink signals, thus resulting in a large outage probability. In this paper, we analyze the characteristics of ADI atmospheric duct interference (Atmospheric Duct Interference) by the use of real network-side big data from the current operated TD-LTE network owned by China Mobile. The analysis results yield the time varying and directional characteristics of ADI. In addition, we proposed an SVM (Support Vector Machine)-classifier based spacial prediction method of ADI by machine learning over combination of real network-side big data and real meteorological data. Furthermore, an implementation of ADMM (Alternating Direction Methods of Multipliers) framework is proposed to implement a distributed SVM prediction scheme, which reduces data exchange among different regions/cities, maintains similar prediction accuracy and is thus of a more practical use to operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Communications and Information Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.