Abstract
A comprehensive study has been made of a duo-dielectric capacitor in which one of the dielectrics is photoconducting and the other inert. Under dark conditions, device capacitance per unit area is set by the respective dielectric coefficients, conductivities, and thicknesses. Illumination causes device capacitance to change, and decreases the interfacial polarization relaxation time. Analysis reveals the means to optimize device performance, and the existence of a light-dark capacitance ratio-cutoff frequency limitation. A fabricated unit, utilizing CdS with BaTiO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> , exhibited a capacitance change of 2500 times and a frequency span extending to 0.22 Mc/s. A CdS:silicone plastic unit showed a maximum capacitance change of 20 times and a frequency span of ∼10 Mc/s, but had degraded dark performance attributed to electron traps, and an interesting piezo-electric resonance that affected both capacitance and dissipation factor at 0.315 Mc/s. Applications of this type of a light-sensitive capacitor are limited to specialized situations where a maximizing dissipation factor and a varying frequency bandwidth can be tolerated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.