Abstract

The turbomachine industry is increasingly interested in developing automated design procedures that are able to summarize current design experience, to take into account manufacturing limitations and to define new rules for improving machine performance. In this paper, a strategy for the parametric analysis and optimization of transonic centrifugal impellers was developed, using the technique of the design of experiments coupled with a three dimensional fluid-dynamic solver. The geometrical parameterization was conducted using Bezier curves and a few geometrical parameters, which were chosen after a screening analysis in order to determine the most significant ones. The range of variation of the parameters was defined taking into account the manufacturing requirements. The analysis of the influence of such parameters on the main impeller performance was subdivided into two steps: first, the effect of the parameters acting on the blade shape was investigated and an optimum configuration was chosen, then the influence of three functional parameters was analyzed, fixing the already optimized variables. The whole strategy aimed at an industrial design approach, and attention was focused on the time required in the design process. From the present analysis it was possible not only to define an optimum geometry, but also to understand the influence of the input parameters on the main machine performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call