Abstract

Abstract In the High Velocity Oxygen Fuel (HVOF) technology, the coating properties are sensitive to the behaviors of in-flight particles, which are mainly influenced by the processing parameters. However, due to the complex chemical and thermodynamic reactions, the real-time optimization of the coating properties during the HVOF process is still a challenging issue. This study focused on establishing an Artificial Neural Networks (ANN) model to analyze the influence of the processing parameters on the characteristics of in-flight particles. Hydroxyapatite (HA) powders were selected to deposit onto the stainless steel substrates via an improved HVOF spraying system. Combined with an Accuraspray-g3 system applied to acquire the temperature and velocity of inflight HA particles, the artificial neural network algorithm was well trained to predict the velocity and temperature of in-flight particles. The relationship between the variations of the operating parameters (gas flow rates and fuel-to-oxygen ratio) and the behaviors of in-flight HA particles was investigated, which therefor contributes to analyzing and optimizing the mechanical performance and crystallinity of the HA coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.