Abstract
Calculations of service availability of a high-availability (HA) cluster are usually based on the assumption of load- independent machine availabilities. In this paper, we study the issues and show how the service availabilities can be calculated under the assumption that machine availabilities are load dependent. We present a Markov chain analysis to derive the steady-state service availabilities of a load-dependent machine availability HA cluster. We show that with a load-dependent machine availability, the attained service availability is now policy dependent. After formulating the problem as a Markov decision process, we proceed to determine the optimal policy to achieve the maximum service availabilities by using the method of policy iteration. Two greedy assignment algorithms are studied: least load and first derivative length (FDL) based, where least load corresponds to some load balancing algorithms. We carry out the analysis and simulations on two cases of load profiles: In the first profile, a single machine has the capacity to host all services in the HA cluster; in the second profile, a single machine does not have enough capacity to host all services. We show that the service availabilities achieved under the first load profile are the same, whereas the service availabilities achieved under the second load profile are different. Since the service availabilities achieved are different in the second load profile, we proceed to investigate how the distribution of service availabilities across the services can be controlled by adjusting the rewards vector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.